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ABSTRACT

Cellular senescence is a complex multifactorial bi-
ological phenomenon that plays essential roles in
aging, and aging-related diseases. During this pro-
cess, the senescent cells undergo gene expression
altering and chromatin structure remodeling. How-
ever, studies on the epigenetic landscape of senes-
cence using integrated multi-omics approaches are
limited. In this research, we performed ATAC-seq,
RNA-seq and ChIP-seq on different senescent types
to reveal the landscape of senescence and identify
the prime regulatory elements. We also obtained 34
key genes and deduced that NAT1, PBX1 and RRM2,
which interacted with each other, could be the poten-
tial markers of aging and aging-related diseases. In
summary, our work provides the landscape to study
accessibility dynamics and transcriptional regula-
tions in cellular senescence. The application of this
technique in different types of senescence allows us
to identify the regulatory elements responsible for
the substantial regulation of transcription, providing
the insights into molecular mechanisms of senes-
cence.

INTRODUCTION

Cellular senescence (or merely ‘senescence’) is a cell fate
that includes permanent cell cycle arrest, expression of
senescence-associated transcripts (e.g. p16INK4a and NF-
kB), and acquisition of a senescence-associated secretory
phenotype (1). Senescent cells occur throughout life and
play beneficial roles in various physiological processes,
including embryo development, tissue repair, and tumor
suppression (1,2). Meanwhile, the steady accumulation of
senescent cells in key cellular niches that occur with age

also has adverse consequences, which could drive aging and
aging-related diseases.

Over the past decades, many epigenomic studies focused
on cellular senescence and explored novel approaches to
identify, characterize, and eliminate senescent cells (3–7).
During senescence, the cells that finally succumb to mul-
tifactorial stress undergo alterations in the general loss of
histones coupled with local and global chromatin remodel-
ing, an imbalance of activating, repressive histone modifi-
cations, and global transcriptional change (8,9). However,
information on how epigenetic alterations specifically regu-
late transcriptional changes and gene expression is still lim-
ited.

In this study, we used an integrated multi-omics ap-
proach comprising assays of transposase-accessible chro-
matin (ATAC-seq), RNA-seq and ChIP-seq to reveal the
landscape of senescence and identify the prime regulatory
elements and key genes. We chose different types of stress-
induced senescence, which were including replicative cellu-
lar senescence (RS) and oncogene induced senescence (OIS,
which often been mutant at HRASv12), to reveal the sub-
stantial changes and elucidate the characteristics of senes-
cence.

MATERIALS AND METHODS

Cell culture

Human diploid 2BS fibroblasts cells were grown in min-
imum essential medium (Gibco, 11095080) supplemented
with 10% certified fetal bovine serum (BI, 04-001-1A), 1%
200 mM glutamine (Gibco, A2916801), 1% 10000 U/ml
Penicillin–Streptomycin (Gibco, 15140122), and 1% MEM
non-essential amino acids (Gibco, 11140050), in a humidi-
fied atmosphere with 5% CO2 at 37◦C. These cells were con-
sidered as ‘growing’ at PD30 or below and as ‘senescent’ at
PD50 or above.
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ATAC-seq

After 50 000 2BS cells were counted, Tn5 transposase was
used to simultaneously cut the hierarchically folded DNA.
Native nuclei were purified by MinElute PCR Purification
Kit (Qiagen, 28004) and amplified by six cycles of quanti-
tative real-time PCR. Genomic DNA of 10 ng was used as
input control.

Data download

The previous publication datasets of ATAC-seq, RNA-
seq and ChIP-seq were downloaded from GEO database
(https://www.ncbi.nlm.nih.gov/geo/). The GSM IDs of
them in this assay are listed in Supplementary Table S1.

ATAC-seq and ChIP-seq data processing

ATAC-seq and ChIP-seq libraries were sequenced on the
Illumina Hiseq PE150 sequencer or other platform to ob-
tain 60–130 million of 2 × 150 bp paired-end sequenc-
ing reads per sample. Data quality was controlled us-
ing FastQC (v.0.11.9, www.bioinformatics.babraham.ac.
uk/projects/fastqc). After trimming the adaptor and remov-
ing low-quality reads, the obtained clean data were aligned
to human genome hg38 by the Burrows–Wheeler Aligner
tool (v.0.7.10). A peak calling analysis was conducted us-
ing MASC2 (v.2,2) with the following parameters: macs2
callpeak -nomodel -f BAMPE–keep -dup 1 -q 0.05 -B–
SPMR. Integrative Genomics Viewer (IGV) (v.2.7.0) was
used to track visualization. Only peaks that were consis-
tently observed in replicates were emphasized to identify the
Tn5 hypersensitive set region (THSS) region with the high-
est confidence for each condition. The THSSs were anno-
tated to genomic feature and GC percentage using the an-
notatePeaks.pl of HOMER (v.4.11) software. Read counts
were analyzed by BEDTools, and visualization was per-
formed using ‘ggplot2’ R packages. Transcription factor
binding motifs were identified with HOMER findMotif-
sGenome.pl tool in the chromatin-accessible region; those
with P-value <0.05 were considered significant.

RNA-seq data processing

For RNA-seq, raw data were trimmed by removing the
adaptor to construct sequencing libraries. The batch effects
were removed by an empirical Bayes framework with the
‘ComBat’ function in the ‘sva’ R package. In order to main-
tain original value of batch adjustment, differentially ex-
pressed genes (DEGs) were identified by ‘limma’ R pack-
age; those with P-value < 0.05 and abs (log2FC) >0.26 were
considered significant.

Correlation between chromatin accessibility and gene expres-
sion

In order to assess the global relationship between chromatin
accessibility and gene expression, we categorized the genes
into high, medium and low. The threshold of three quantile
chromatin accessibility groups was determined by ATAC-
seq signals. The threshold of three quantile gene expres-
sion groups was determined by mRNA level. The heatmap

and its clusters (by k-means) were generated with the ‘deep-
Tools’ R package. The correlated genes were visualized by
the ‘ggplot2’ R package.

Correlation between chromatin accessibility and chromatin
characterization

Chromatin state was calculated by chromatin state seg-
mentation (ChromHMM), and the THSSs were classi-
fied by different histone post-translational modifications
(hPTMs) as follows: unspecific (high enrichment level in all
hPTMs), TSS-like (transcription start site like region) (ob-
tained enrichment in H3K4me3, depleting in H3K27me3),
enhancer-like (enriched in H3K4me1/H3K27ac, depleting
in H3K4me3), and depleted-region (low levels of enrich-
ment for all hPTMs).

Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis

GO enrichment annotations were downloaded from NCBI
(http://www.ncbi.nlm.nih.gov/), UniProt (http://www.
uniprot.org/) and GO (http://www.geneontology.org/).
KEGG pathway enrichment annotations were obtained
from KEGG (https://www.genome.jp/kegg/) database.
Significant GO and KEGG categories were identified by
fisher’s exact test, and a false discovery rate was used to
correct the P-value.

Statistical analysis

All data were presented as mean ± standard deviation.
Independent sample t-test was used to compare the two
groups. P-value <0.05 indicated statistically significant dif-
ferences between compared groups. Statistical analyses were
performed by GraphPad Prism 6 software and R packages.

Gene Expression Profiling Interactive Analysis (GEPIA)

GEPIA server (http://gepia.cancer-pku.cn/) was used to
analyze the data of The Cancer Genome Atlas (TCGA)
Program and The Genotype-Tissue Expression (GTEx)
Project, including gene correlation, disease-free survival
(DFS), and pathological stage. Correlation analysis was
conducted using data from the GTEx database, includ-
ing adipose, adrenal gland, bladder, Epstein–Barr virus-
transformed lymphocytes, artery, whole blood, leukemia
cell line, brain, breast, cervix, colon, esophagus, fallop-
ian tubes, heart, kidneys, liver, lungs, muscles, nerves,
ovaries, pancreas, pituitary gland, prostate gland, minor
salivary gland, transformed fibroblasts, skin, small intes-
tine, spleen, stomach, testis, thyroid and uterus. The co-
efficient was calculated on a non-log scale using Pear-
son correlation, and a log scale axis was applied for vi-
sualization. DFS was analyzed by log-rank test using the
TCGA database composed of 33 cancer types, namely,
adrenocortical carcinoma (ACC), bladder urothelial car-
cinoma (BLCA), breast invasive carcinoma (BRCA), cer-
vical squamous cell carcinoma and endocervical adeno-
carcinoma (CESC), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD), lymphoid neoplasm diffuse
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large B-cell lymphoma (DLBC), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck
squamous cell carcinoma (HNSC), kidney chromophobe
(KICH), kidney renal clear cell carcinoma (KIRC), kid-
ney renal papillary cell carcinoma (KIRP), acute myeloid
leukemia (LAML), brain lower grade glioma (LGG), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), mesothe-
lioma, ovarian serous cystadenocarcinoma (OV), pancre-
atic adenocarcinoma (PAAD), pheochromocytoma and
paraganglioma, prostate adenocarcinoma, rectum adeno-
carcinoma (READ), sarcoma (SARC), skin cutaneous
melanoma (SKCM), stomach adenocarcinoma (STAD),
testicular germ cell tumor (TGCT), thyroid carcinoma
(THCA), thymoma (THYM), uterine corpus endometrial
carcinoma (UCEC), uterine carcinosarcoma (UCS) and
uveal melanoma. The pathological stage was examined us-
ing the following data from the TCGA database: ACC,
BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA,
GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG, LIHC,
LUAD, LUSC, OV, PAAD, READ, SARC, SKCM, STAD,
TGCT, THCA, THYM, UCEC and UCS. DEGs were ana-
lyzed by one-way ANOVA using the pathological stage as a
variable for calculating differential expression. Expression
data were first log2 (TPM + 1) transformed for differential
analysis.

Participants

Volunteers consisting of healthy people (n = 60, with
no restriction of age), young healthy people (n = 20,
age = 25.3 ± 1.53 years), old healthy people (n = 20,
age = 73.25 ± 2.22 years), patients who suffered from stroke
(n = 20, age = 74.65 ± 3.30 years), patients with Pan-Cancer
(n = 20, age = 73.05 ± 2.86 years), and patients with dia-
betes (n = 20, age = 75.2 ± 2.33 years) donated their pe-
ripheral blood with informed consent. All participants were
non-smokers, and the healthy people were free from history
of recent infection, chronic disease, or any medication sup-
plementation for 4 weeks prior to the experiment. The study
was approved by the ethics board of Xuanwu hospital Cap-
ital Medical University.

Collected whole blood samples and isolated peripheral blood
mononuclear cells (PBMCs)

Fresh peripheral blood samples were collected in Va-
cutainer® Plus Plastic EDTA-K2 tubes (BD, 367862).
PBMCs were isolated from the fresh peripheral blood by
density gradient centrifugation with Ficoll (TBD, LTS1077)
following the experimental protocol. Stroke-physiological
saline solution (CR DOUBLE-CRANE, H34023609) was
applied to dilute the peripheral blood.

Western blot

The PBMCs were lysed with radioimmunoprecipitation
assay lysis buffer (Solarbio, R0010) containing phenyl-
methanesulfonyl fluoride (Solarbio, P0100) and protease
inhibitor cocktail (Beyotime, P1005). The protein concen-
tration of cell lysates was detected by Pierce BCA Pro-

tein Assay Kit (Thermo, 23227). Then, the equal concen-
trations of protein were loaded and run on the 10% SDS-
PAGE gel (Beyotime, P0012A) to separate. After trans-
ferred to a polyvinylidene fluoride membrane (Millipore,
IPVH00010), protein bands were detected by incubating
the indicated horseradish peroxidase-conjugated antibod-
ies, including GAPDH (Proteintech, 10494-1-AP), RRM2
(Proteintech, 11661-1-AP), PBX1 (Proteintech, 18204-1-
AP), and NAT1 (Proteintech, 19188-1-AP). The bands
were visualized by enhanced chemiluminescence (Yeasen,
36222ES60).

Co-immunoprecipitation (Co-IP)

To obtain the clearer bands, the cell extracts amount could
range from 100 to 1200 �g. The cell extracts from the
PBMCs of healthy people were separately rotated and incu-
bated with 4 �g antibodies of RRM2 (Proteintech, 11661-
1-AP), PBX1 (Proteintech, 18204–1-AP), NAT1 (Protein-
tech, 19188-1-AP), and IgG (Abcam, ab172730) at 4◦C
for 12 h, followed by incubation with 50 �l (0.50 mg) of
PureProteome™ Protein A/G Mix Magnetic Beads (Mil-
lipore, LSKMAGAG10) at 4◦C for 4 h with rotation. Ev-
ery 60 �g cell extracts were isolated as input. The magnetic
beads were then washed three times with ice-cold extrac-
tion buffer, mixed with 1 × protein loading buffer which was
diluted by 5× protein loading buffer (LABLEAD, G2527)
with extraction buffer, and boiled at 95◦C for 10 min. Then,
the IP products were loaded and run on the 10% SDS-
PAGE gel (Beyotime, P0012A) to separate. After trans-
ferred to a polyvinylidene fluoride membrane (Millipore,
IPVH00010), protein bands were detected by incubating the
indicated horseradish peroxidase-conjugated antibodies, in-
cluding RRM2 (Proteintech, 11661-1-AP), PBX1 (Protein-
tech, 18204-1-AP), and NAT1 (Proteintech, 19188-1-AP).
The bands were visualized by enhanced chemiluminescence
(Yeasen, 36222ES60).

RESULTS

High-resolution chromatin accessibility profiles revealed dif-
ferences between growing and senescent cells

Considering that human diploid 2BS fibroblasts are
a widely used cell model to study cellular senescence
and aging-related disorders, we employed growing 2BS
cells and senescent 2BS cells as RS representatives to
generate ATAC-seq libraries (created with BioRen-
der.com) (Figure 1A), which can sensitively measure
high-resolution chromatin accessibility (10,11). For each
age stage, we obtained two independent ATAC-seq
replicates. To explore any difference in OIS, we also ob-
tained the ATAC-seq data of cellular senescence from
GSM2774972, GSM2774973, GSM2774974, control
data from GSM2774968, GSM2774969, GSM2774970,
GSM2774971 (12). Through the unbiased clustering of
all ATAC-seq samples, we observed a correlation between
RS and OIS, suggesting their homogeneity (Figure 1B).
Principal component analysis (PCA) in RS and OIS groups
identified age as the main variation source (Supplementary
Figure S1A, B).
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